Monte Carlo Study of Pion Absorption in LArIAT

Andrew Olivier for the LArIAT Collaboration

APS April Meeting

April 18, 2016

Credit: Fermilab

The Deep Underground Neutrino Experiment

Credit: DUNE Collaboration

- The Deep Underground Neutrino Experiment will precisely measure parameters of neutrino oscillations in a beam of high energy neutrinos sent from Fermilab in Batavia, IL to Lead, SD
 - Plans to use liquid argon time projection chamber (LArTPC) technology to capture energy deposited and reconstruct topologies of neutrino interactions
 - Requires precise knowledge of responses of LArTPCs to various charged particles
 - Cross sections are needed for interactions like pion absorption and pion charge exchange that change the final state of a neutrino interaction
 - Photon showers from neutral pion decays can be mistaken for electrons from electron neutrino interactions if one photon does not convert in the TPC

LArIAT

- The Liquid Argon Time Projection Chamber in a Test Beam experiment studies charged particle interactions in a LArTPC
 - Exposes a LArTPC to a controlled beam of charged particles
 - Test beam detectors identify beam particles for comparison with TPC
 - Uses a preexisting small TPC: the modified
 ArgoNeut TPC

LArIAT's Beamline

• Beam of mixed particles produced at start of beamline

LArIAT's Beamline

- Beam of mixed particles produced at start of beamline
- Time of Flight detectors determine how long particles took to traverse beamline
- Wire Chambers track positions of particles as they approach the TPC
- Magnets bend beam to select charge and momentum range for particles

- Aerogel detectors measure particles' velocities
- Halo veto detects particles traveling along the beam that may not have been selected by magnets
- LArIAT TPC records images of particle interactions
- Punch through veto detects particles that pass through the TPC
- Muon range stack measures energies of exiting muons based on how much steel they penetrate

LArIAT's Beamline

- Beam of mixed particles produced at start of beamline
- Time of Flight detectors determine how long particles took to traverse beamline
- Wire Chambers track positions of particles as they approach the TPC
- Magnets bend beam to select charge and momentum range for particles

- Aerogel detectors measure particles' velocities
- Halo veto detects particles traveling along the beam that may not have been selected by magnets
- LArIAT TPC records images of particle interactions
- Punch through veto detects particles that pass through the TPC
- Muon range stack measures energies of exiting muons based on how much steel they penetrate
- Together, LArIAT's beamline detectors can identify a particle's species and measure its momentum

Monte Carlo Sample

- Momenta uniformly distributed between 0 MeV/c and 1500 MeV/c
- 18,000 π⁺
- 10,000 of each of μ^{+} , p^{+} , and K ⁺
- Started all particles at the beam window
- For this study, all "beamline" values are taken from MC truth information

Signal Definition

 An event in which a charged pion enters the TPC and interacts with no charged pions leaving the interaction

Signal Definition

 An event in which a charged pion enters the TPC and interacts with no charged pions leaving the interaction

Particle Identification

- Identifying a particle's species is key to identifying an event topology
- Exploits differences in particles' energy loss in matter as a function of distance traveled
- Two populations:
 - Particles that lose all energy by ionization
 - Particles that stop by interacting
- For a track's calorimetry information, calculate a likelihood for each probability density function (PDF)
 provided
 - Pion, proton, muon, and kaon hypotheses: used for incident particles

Particle Identification

- Identifying a particle's species is key to identifying an event topology
- Exploits differences in particles' energy loss in matter as a function of distance traveled
- Two populations:
 - Particles that lose all energy by ionization
 - Particles that stop by interacting
- For a track's calorimetry information, calculate a likelihood for each probability density function (PDF)
 provided
 - Pion, proton, muon, and kaon hypotheses: used for incident particles
 - Pion and proton hypotheses: used for daughters of incident particles

• Looking for events with an incident pion

- Looking for events with an incident pion
- To identify topology, need interaction point in the TPC

- Looking for events with an incident pion
- To identify topology, need interaction point in the TPC
- Check that each track is more proton-like than pion-like

- Looking for events with an incident pion
- To identify topology, need interaction point in the TPC
- Check that each track is more proton-like than pion-like

Performance with Reweighting

Before Selection

Selection Ratios

After Selection

Purity

Overall Purity: 54%

Conclusions, and Future Work

Conclusions

- Implemented a likelihood-based particle identification method
- Developed an algorithm to search for pion absorption and charge exchange events based on event topology
- Demonstrated that this algorithm substantially reduces pion background
 - >60% efficiency
 - >50% purity

Future Work

- Extend purity measurement to include other incident particles
- Extend analysis to measure cross sections for data

Likelihood Definition

- Given some set of reconstructed points {(x_i, y_i)} of the form (residual range, dE/dx)
- Given a probability density function f_{particle}(x , y), a 2-D histogram of dE/dx versus residual range
- In(L_{particle}) = $\sum_{i=1}^{n} \ln(f_{particle}(x_i, y_i))$
- To make the best use of double precision values, In(L_{particle}) is calculated as a sum of natural logs rather than as a product
- . $ln(L_{pion}/L_{proton}) = ln(L_{pion}) ln(L_{proton})$ is plotted in likelihood ratio plots

Pion-Proton Separation

- Pion and proton likelihoods from Monte Carlo samples
- X-axis is In(L_{pion}) In(L_{proton})
- Separation in distributions corresponds to how well pions can be distinguished from protons by PID
- PID picks the hypothesis with the largest likelihood

Kinetic Energy Values in Plots

- True Interaction Kinetic Energy = $M_0(\gamma-1)$
- Reconstructed Interaction Kinetic Energy
 - Start with "beamline" kinetic energy: taken from truth kinetic energy at beam window
 - Subtract 8.6 MeV for energy lost between beam window and TPC as done by total pion cross section group
 - Calorimetry provides kinetic energy and total range
 - Option 1: Subtract kinetic energy (in TPC) from estimated kinetic energy at TPC front face
 - Option 2: Take average dE/dx to be 2.3 MeV/cm for all pions in this study. Subtract
 2.3MeV/cm*Range from estimated kinetic energy at TPC front face
 - Use method with less deviation from true values

Fractional Interaction Kinetic Energy Resolution

Selection Algorithm Performance on Pions

Before Selection

After Selection

Selection Ratios

Reweighting

- Flat momentum spectrum of Monte Carlo sample does not reflect LArIAT beam
 - Expect more lower energy pions from LArIAT's beam
 - Expect fewer protons and very few kaons
- Used a reweighting scheme developed by LArIAT Pion Total Cross Section analysis group

Weight Spectrum

Reweighted Momentum Spectrum

Removing Other Incident Particles

Before Selection

After Selection

Selection Ratios

Data Collection

- Run I
 - May-July 2015
 - Beam tuning with help of accelerator division
 - Data currently being analyzed
- Run II
 - Currently in progress
 - Planned for February-July 2016

Motivation: Needs of y-experiments

- Simplified view of how we do neutrino experiments goes like:
 - Fire a beam of neutrinos into your detector
 - Detect the particles that come out from the interaction
 - Reconstruct the information about the neutrino
- But we all know that the world is a much more complicated place....

Motivation: Needs of v-experiments

